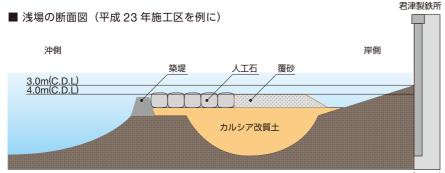
カルシア改質土 施工事例

施工 6 深掘れ窪地の埋戻し用材としての適用事例 君津浅場造成工事

1.目 的		■浚
2. 発注者	千葉県漁業協同組合連合会、君津市、日本製鉄(株)	土粒= (g/c
3. 施工場所	千葉県君津市日本製鉄(株)東日本製鉄所西護岸沖	2.6
4. 施工時期	平成25年~令和3年(9ヶ年) ※カルシア改質土施工時期:5月~8月	
5. 施工数量	約420,000m ² (約480m×160m×最大厚さ5.8m)	
6. 配合・材料	カルシア改質材混合割合: 容積混合率30% 使用土砂 : 近隣の浚渫土 カルシア改質材 : 粒径0-5mm日本製鉄(株)東日本製鉄所(君津)	製造

バックホウ混合・直接投入


7. 施工方法

■ 浚渫土の物理特性

土粒子密度 (g/cm³)		自然含水比 (%)	液性限界 (%)	細粒分含有率 (%)
2.663	1.303	141.7	103.8	95.6

■ カルシア改質材の物理特性

表乾密度		吸水率	
(g/cm³)		(%)	
	3.08	4.18	

注)水深は大潮の平均的な干潮面を基準としています(C.D.L)

施丁状況